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Abstract
Transport through carbon nanotube (CNT) quantum dots (QDs) in a magnetic field is discussed.
The evolution of the system from the ultraviolet to the infrared is analyzed; the strongly
correlated (SC) states arising in the infrared are investigated. Experimental consequences of the
physics are presented—the SC states arising at various fillings are shown to be drastically
different, with distinct signatures in the conductance and, in particular, the noise. Besides CNT
QDs, our results are also relevant to double-QD systems.

(Some figures in this article are in colour only in the electronic version)

Since their discovery, carbon nanotubes (CNTs) have been
the subject of intense activity [1]; in particular, experiments
on transport in CNTs have revealed a wealth of exciting
phenomena. Indeed, long metallic CNTs have been shown
to behave as quantum wires [2, 3]; negative differential
resistance has been observed in semiconducting CNTs [4].
Furthermore, short CNTs have been shown to behave as
quantum dots (QDs) [3, 5, 6], exhibiting Coulomb blockade
(CB) phenomenology [7] known from gated two-dimensional
semiconducting structures.

QDs have spurred a renewed excitement about the Kondo
effect (KE), as they allow detailed investigations of the
phenomena [8]. In this regard, CNT QDs are ideal for studies
of Kondo physics. Indeed, initial experiments displayed an
SU(2) KE arising from the electron’s spin [6]; more recently,
orbital [9] as well as SU(4) KEs have been observed [9–11].
Furthermore, CNT QDs afford the possibility of tuning
between a variety of strongly correlated (SC) states with a
magnetic field [9, 10].

In this work, we consider transport through CNT QDs,
focusing on their behavior in a magnetic field. We analyze
the system’s evolution from the ultraviolet (UV) to the infrared
(IR) fixed points (FPs); we discuss the KEs that arise and their
consequences. More specifically, we consider the KEs arising
from a single electron (referred to as 1/4-filled) as well as two

electrons (referred to as 1/2-filled) occupying the energy levels
of the CNT QD closest to the Fermi energy EF of the leads.
While previous works detailed the properties of the 1/4-filled
QD [12], we show that the KEs arising from the 1/4-filled and
1/2-filled QDs are drastically different; these differences have
pronounced observable consequences.

In what follows, we will be interested in the system’s low
energy physics; hence, we focus on the energy levels of the
CNT QD closest to EF of the leads. In the absence of magnetic
fields, there are two degenerate energy levels [9, 13], which we
label as α and β . The Hamiltonian we consider is

HQD = EC

2
(N̂ − N0)

2 − h0

2

∑

s

(n̂αs − n̂βs)

+
∑

κ,s

([t1 ψ†
1κs(0)+ t2 ψ

†
2κs(0)]dκs + h.c.), (1)

where ψ†
iκs(0) creates an electron (at x = 0) with spin s in

band κ from lead i (i = 1, 2); d†
κs creates an electron with

spin s in orbital κ (κ = α, β) on the QD; n̂κs = d†
κsdκs

and N̂ = ∑
κ,s n̂κs ; N0 is the optimal number of electrons on

the QD, which can be controlled by a gate voltage; EC is the
charging energy; ti is the tunneling matrix element between
lead i and the QD; h0 is a magnetic field. In this work, we take
{ti} to conserve the orbital quantum number (which is relevant
to the experiments in [10] and [11]) [14]; as a result, the system
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Figure 1. G = dI/dV versus N0 in linear response for several values
of h0: (a) T = 0.1EC and (b) T = 0.

has an SU(4) symmetry when h0 = 0.3 h0, which would arise
from a magnetic field applied parallel to the CNT’s axis, splits
the α and β orbitals. Throughout this work, we employ units
where h̄ = 1.

It should be noted h0 would also give rise to a Zeeman
splitting, but this splitting is considerably smaller than the
orbital splitting, particularly for larger-diameter CNTs. Indeed,
the orbital moment μorb of a 5 nm diameter CNT was found to
be μorb � 1.5 meV T−1 [13], i.e. μorb � 26 μB (where μB is
the Bohr magneton). As we will be interested in small fields—
h0 ∼ O(T SU(4)

K ), where T SU(4)
K is given by equation (5)—the

Zeeman splitting will have very small effects. Therefore, in
what follows, we focus on the orbital splitting.

We begin our discussion of the properties of CNT QDs
by considering the current I = 〈 Î 〉, where Î is the current
operator:

Î = −iet1
∑

κ,s

[ψ†
1κs(0)dκs − d†

κsψ1κs(0)] (2)

(e is the electron’s charge); in particular, we compute the
conductance G = dI/dV versus N0 (in linear response). We
are interested in the behavior of G as h0 is varied, as well
as how G evolves (with temperature) from the UV to the IR
FPs. To understand the IR behavior, G was computed as
per [16] using the logarithmic-discretization embedded cluster
approximation (LDECA) [17] and the Friedel sum rule [18];
to treat the UV regime—T � �i , where �i = 2πρ0t2

i
with ρ0 being the electrons’ density of states in the leads—we
employed a master equation approach [19].

Figure 1(a) shows G versus N0 in the UV regime for
several values of h0. Letting �0 = 2�1�2/(�1 + �2)

G = e2�0

∑

{Nα,Nβ ,N ′
α,N

′
β }

max{MNα Nβ ,MN ′
α N ′

β
}PNαNβ

× exp[(ENαNβ − EN ′
αN ′

β
)/T ] + 1

8T cosh2[(ENαNβ − EN ′
αN ′

β
)/2T ] ,

where PNαNβ is the probability for the QD to be in a state with
Nα (Nβ ) electrons in the α (β) orbital, ENαNβ is the energy of
the state with MNα Nβ being the number of these states, and the
{Nα, Nβ , N ′

α, N ′
β } satisfy (Nα + Nβ) − (N ′

α + N ′
β) = 1. In

figure 1(a), we observe the well-known CB peaks for N0 =
3 For a review of SU(4) KEs in nanostructures, see [15].

Figure 2. QD’s spectral function Ad(ω). (a) Ad(ω) for N0 = 1/2.
(b) Ad(ω) for N0 = 1. (c) Ad(ω) for N0 = 2. Insets: comparison of
Ad(ω) at the UV (gray dotted lines) and IR (solid black lines) fixed
points.

N + 1/2 (N is an integer) and valleys for N0 = N . When
h0 = 0, the system has an SU(4) symmetry; the two middle
peaks have more spectral weight, e.g. the peak at N0 = 3/2
(due to fluctuations between states with N = 1 and 2) has more
spectral weight than the peak at N0 = 1/2 (due to fluctuations
between states with N = 0 and 1). From the above expression
for G, this occurs because there are more states with N = 2
than N = 1 or 0. When h0 �= 0, the SU(4) symmetry
is reduced to SU(2); as a result, the peaks are split and the
spectral weight becomes evenly distributed.

Figure 1(b) shows G/G0 versus N0 at T = 0, where
G0 = (e2/π)4�1�2/(�1 + �2)

2. Rather than four peaks,
we see three distinct plateaus when h0 = 0—G/G0 = 1
for the plateaus centered about N0 = 1 and 3; G/G0 = 2
for the plateau centered about N0 = 2. Furthermore, h0 has
interesting effects on G—whereas h0 mainly splits the peaks in
the UV regime (figure 1(a)), h0 has more drastic effects in the
IR. Indeed, the plateau centered about N0 = 2 is suppressed
by h0; the plateaus centered about N0 = 1 and 3, on the
other hand, are unaffected. As discussed below, the behavior at
T = 0 occurs because SC states between the QD and leads are
formed; h0 has drastic effects on the SC states.

We now address the physics behind figure 1—we
investigate the SC states which arise in the IR, as well as how
they evolved from the UV FP. To this end, we examine the
QD’s spectral function (SF), Ad(ω). Figure 2 shows Ad(ω) (at
T = 0) obtained via the LDECA. For comparison, results for
Ad(ω) at the UV FP—obtained by formally setting {ti } = 0—
are shown in the insets. Figure 2(a) shows Ad(ω) at the
N0 = 1/2 CB peak. Here we see a broad peak near ω = 0,
i.e. near EF; its features do not change much with h0. From the
insets, we see there was a redistribution of spectral weight, with
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Figure 3. χ field propagator J (iωm)—the solid (dashed) line
denotes the leads’ ( f fermions’) Green’s function.

much of the peak’s weight in the IR having been transferred
from higher energies.

Figures 2(b) and (c) show Ad(ω) in the CB valleys. A key
feature is the narrow resonance which appears at or near EF—
the Kondo resonance (KR). This resonance is a consequence
of the SC state formed between the QD and leads due to
the KE; its width represents the dynamically generated scale
characteristic of the SC state—the Kondo temperature, TK.
As discussed below, the position and width of the KR are
characteristic of the particular Kondo fixed point (KFP).

Figure 2(b) shows Ad(ω) in the N0 = 1 valley, i.e. the
1/4-filled QD. For h0 = 0, Ad(ω) exhibits a KR near EF;
for h0 �= 0, the resonance moves toward EF and its width
narrows. As mentioned above, when h0 = 0 the system has
an SU(4) symmetry; h0 �= 0 reduces this symmetry to SU(2).
For the 1/4-filled QD, the system flows to the SU(4) KFP
when h0 = 0, while h0 �= 0 drives the system to the SU(2)
KFP; the KR is near (at) EF at the SU(4) (SU(2)) KFP with
T SU(2)

K < T SU(4)
K . The UV and IR behaviors of Ad(ω) are

compared in the insets—the KR is indeed an IR property, with
its spectral weight taken from the higher energy UV peaks;
interestingly, h0 does not change the qualitative features of
Ad(ω) at either the UV or IR FPs.

Figure 2(c) shows Ad(ω) for N0 = 2, i.e. the 1/2-filled
QD—its behavior is drastically different from the SFs arising
for both N0 = 1/2 and 1. For h0 = 0, Ad(ω) exhibits a
narrow KR at EF; for h0 �= 0, the resonance splits and is
suppressed. Hence, contrary to the 1/4-filled QD where h0

drives the system from the SU(4) KFP to the SU(2) KFP,
h0 destroys the KE for the 1/2-filled QD. The UV and IR
behaviors of Ad(ω) are compared in the insets—we see the
KR suppressed as h0 increases; as this occurs, the peaks at
ω = ±EC/2 regain spectral weight.

Having discussed the QD’s SF in the various regimes, we
now discuss (further) consequences of the SF’s features in the
CB valleys, i.e. for N0 � N . To facilitate the analysis, we
integrate out charge fluctuations on the QD; we arrive at the
Coqblin–Schrieffer Hamiltonian [18]

HQD = − J

4
(ψ

†
κs fκs)( f †

κ ′s ′ψκ ′s ′)− h0

2
f †
κsσ

z
κκ ′ fκ ′s (3)

where ψκs = [t1ψ1κs(0) + t2ψ2κs(0)]/t with t =
√

t2
1 + t2

2 ,

J = (4t2/EC)[(N − N0 − 1/2)−1 − (N − N0 + 1/2)−1] and
the fermion operators satisfy the constraint f †

κs fκs = N with N
being the number of particles on the QD. (While discussing the
physics of the CB valleys, we write the QD’s fermion operators
as { fκs}; also, the Einstein summation convention is utilized.)

Figure 4. G/G0 versus T/T SU(4)
K in linear response in the CB

valleys: (a) 1/4-filled QD and (b) 1/2-filled QD.

To treat equation (3), we consider a path integral representation
of the partition function—we enforce the constraint f †

κs fκs =
N with a Lagrange multiplier field λ; we decouple the Kondo
interaction using a Hubbard–Stratonovich field χ [18]. We
arrive at an effective Hamiltonian

Heff = −h0

2
f †
κsσ

z
κκ ′ fκ ′s + λ( f †

κs fκs − N)

+ 4

J
|χ |2 + χ† f †

κsψκs + χ ψ†
κs fκs . (4)

We begin by considering the physics at higher energies,
focusing on the flow from the UV to the IR FPs. To do so,
we treat the Bose fields χ and λ in equation (4) in mean-
field theory (MFT). Treating λ in MFT amounts to treating the
constraint f †

κs fκs = N on average: 〈 f †
κs fκs〉 = N . To describe

the physics near the UV FP, we take 〈χ〉 = 0; the physics of
the KE is contained in the effective action for χ , obtained by
integrating out the f fermions and leads. To one-loop order,
the propagator of the χ field J (iωm) is given by the diagram
in figure 3 (with ωm being a boson Matsubara frequency).
Physically, J (iωm) is the running Kondo coupling [20].

Using our result for J (iωm), the current I = 〈 Î 〉 was
computed as per [16]; results for G/G0 versus T/T SU(4)

K are
shown in figure 4, where

T SU(4)
K = D exp(−1/ρ0 J ) (5)

with D being half the leads’ bandwidth. (As before, G0 =
(e2/π)4�1�2/(�1 + �2)

2.) Figure 4(a) shows results for
the 1/4-filled QD. To begin with, we see that G grows
logarithmically as T is reduced—this is a consequence of
the logarithmic growth of the running Kondo coupling [18].
Furthermore, G/G0 always grows to O(1), i.e. the system
always flows to strong coupling. This is because the 1/4-filled
QD exhibits a KE, irrespective of the value of h0. However,
G grows more slowly for larger h0—the system flows to the
SU(4) (SU(2)) KFP for smaller (larger) h0; the slower growth
of G for larger h0 occurs because T SU(2)

K < T SU(4)
K (see

figure 2(b)).
Figure 4(b) shows G/G0 versus T/T SU(4)

K for the 1/2-
filled QD; the results are drastically different from the 1/4-
filled QD. As discussed above, whereas h0 drives the system
from the SU(4) to the SU(2) KFP for the 1/4-filled QD, h0

destroys the KE for the 1/2-filled QD (see figure 2(c)); G even

3
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Figure 5. G/G0 versus h0/T SU(4)
K and F versus h0/T SU(4)

K in linear
response at T = 0.

becomes non-monotonic. Such behavior has been observed in
magnetic alloys, where the occurrence of a spin glass phase
freezes spin-flip processes and, hence, suppresses the KE [21].
Here, larger values of h0 freeze both spin and orbital processes.
More precisely, h0 cuts off the growth of the running Kondo
coupling—for the 1/2-filled QD J (T ) ≡ J (iωm = 0) is given
by

ρ0J (T ) = J

{
ln

(
2πT

T SU(4)
K

)
+ Re

[
ψ

(
1

2
+ i

h0

4πT

)]}−1

,

where ψ(z) is the digamma function [22]; as ψ(z) � ln(z) for
|z| � 1, the growth of J (T ) is suppressed for h0 sufficiently
larger than T SU(4)

K .
Having discussed the flow (in the CB valleys) from the UV

to the KFPs in the IR, we now discuss further the physics of the
SC KFPs. As before, we treat the Bose fields in equation (4) in
MFT. Now, however, to describe the physics of the SC KFPs,
we take 〈χ〉 = χ0( �= 0) [18]. Hence, λ and χ0 are determined
via 〈 f †

κs fκs〉 = N and χ0 + 2J 〈ψ†
κs fκs〉 = 0. With 〈χ〉 �= 0,

the f fermions’ SF is

A f
i (ω) = 2�

(ω − εi)2 + �2

(ε1/2 = λ± h0/2), where � = TK when T = 0 [18].
Figure 5 shows G/G0 versus h0/T SU(4)

K (computed as
per [16]) at T = 0. For the 1/4-filled QD, G/G0 = 1
regardless of the value of h0. This occurs because there is
always a KE, � �= 0—for small h0, one is in the SU(4) Kondo
regime; for larger h0, one crosses over to the SU(2) Kondo
regime. For the 1/2-filled QD, on the other hand, we see that
G depends on the magnitude of h0—G/G0 = 2 for h0 = 0
and decreases as h0 is increased. (Within MFT, G → 0 for
h0 = 2T SU(4)

K .) This is because the SU(4) KE is destroyed
and, consequently, the KR in the QD’s SF is suppressed for h0

sufficiently large (see figure 2(c)).
Also shown in figure 5 are results for the noise (which has

been shown to be a powerful probe of Kondo physics [23, 24])

at T = 0. More specifically, we computed the zero-frequency
noise:

S(eV ) =
∫

dt[〈 Î (t) Î 〉 − 〈 Î 〉2] (6)

and, subsequently, the Fano factor F ≡ S/2eI in linear
response. While the conductance probes the spectral weight of
the KR, the noise gives information about its position. Indeed,
while both the SU(4) and SU(2) KEs give G/G0 = 1 for the
1/4-filled QD, differences between the two can drastically be
seen in F—F decreases as h0 increases, i.e. as we move from
the SU(4) to the SU(2) KFP. This is seen most dramatically
when t1 = t2, where F → 0 as h0 increases, but the qualitative
behavior of F is robust. (See the results for t1 = 2t2.)
Physically, this arises because the KR in the QD’s SF is at
EF at the SU(2) KFP, while it is away from EF at the SU(4)
KFP (see figure 2(b)). For the 1/2-filled QD, F increases as h0

increases, approaching unity as G → 0; for t1 = t2, F → 0 as
h0 → 0. For h0 = 0, the system is in a SC state, with a KR at
EF; as a result F = 0 when t1 = t2. As h0 is increased, the SC
state is destroyed and the system is driven to the weak-coupling
regime; hence, F → 1, i.e. F becomes Poissonian [25].

To summarize, we considered the behavior of CNT QDs
in a magnetic field. We analyzed the evolution of the system
from the UV to the IR FPs. We discussed the KEs that occur
and their experimental consequences. In particular, the KEs
arising for the 1/4-filled and 1/2-filled QDs were shown to
be drastically different, with distinct signatures in the system’s
transport; we are optimistic our results, particularly for the
noise4, can be observed experimentally. Besides CNT QDs,
our results are relevant to double QDs and, more generally, to
QDs with twofold orbital degeneracy.

This work was supported by the NSERC of Canada (MM and
EHK), a SHARCNET Research Chair (MM and EHK) and the
NSF (DMR-0710529) (GBM).
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